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Dependence on initial conditions of an adsorption-desorption process
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A one-dimensional irreversible adsorption-desorption process is simulated. The critical parameters as well as
the critical exponents are measured. At the critical point, the crossover between the accumulative state and the
depleted state is described by a universal characteristic function.
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I. INTRODUCTION

The irreversible adsorption-desorption process~ADP!
equivalent to a contact process@1# is a simple and represen
tative model of nonequilibrium. Many important models b
long to the same universal class as the ADP. They are,
instance, the stochastic cellular automata@2#, directed perco-
lation @3#, Schlögl’s first model@4,5#, and the Reggeon field
theory @6,7,5#. It is known that this class of models unde
goes a dynamic phase transition. The critical parameter
well as the critical exponents have been calculated by v
ous methods, such as the renormalization groupe expansion,
the field theory, the series analysis, the high temperature
pansion, the operator method, and the Monte Carlo sim
tion, etc. For the adsorption rater larger than a critical value
r c ~i.e., the subcritical phase!, there is only one steady sta
in which all sites are occupied; while forr ,r c ~i.e., the
supercritical phase! active steady states with finite fraction o
vacancy emerge. Power laws of time evolution have b
found for two initial states in the extreme conditions, i.e.,~1!
the state with only one~or few! vacant site~to be referred as
accumulative initial state, or AIS in abbreviation!, and~2! the
state of no molecule~referred as depleted initial state, DIS
abbreviation!. Since the model is nonequilibrium, the initia
conditions could have important effects in all time of t
evolution. Initial states with molecule number ranged fro
one to the maximum will be explored in the present pape

In recent years, the dynamic Monte Carlo method ba
on the short-time dynamic scaling has been widely used
numerical evaluation of the critical parameters and ex
nents. The details of the algorithm can be found in Re
@8–10#. The idea can be traced back to Grassberger and d
Torre twenty years ago@5# in their study on the Schlo¨gl’s
first model that is believed to belong to the same unive
class of the ADP to be studied in the present paper. We
apply the dynamic Monte Carlo method to the ADP. Fro
the short-time evolution of the vacancy fraction with t
AIS, the critical point is estimated. The critical exponents
attained at the critical points with either the AIS or DIS.

Though power laws are lost when molecule number
finite, it is found that the critical short-time behavior can
described by a universal characteristic function. Zheng fi
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observed this phenomenon in the Ising model and P
model @11#. In Ref. @12#, authors attained an analytical ex
pression of the universal function for the kinetic spheric
model. In the present paper, we show that the universal c
acteristic function also exists in a dynamic process tha
irreversible, nonergodic, and does not fulfil any detailed b
ance condition. To confirm the universality of the charact
istic function, we simulate the model with both sequent
and synchronous dynamic rules.

II. THE MODEL AND SCALING LAWS

The process is realized on discrete spacetime. Only p
odic boundary condition will be considered. Each site co
be occupied~denoted bys i51) or nonoccupied~denoted by
s i50). For the sequential rule, the states of sites are upd
one by one from left to right. A vacant site has a probabil
r to adsorb a molecule. The desorption probability of
occupied site depends on the states of its neighbors,wi(s i

51→0)5(22s i 218 2s i 11)/2 with s i 218 the latest updated
state of the (i 21)th site. If both neighbors are occupied, n
desorption is possible. The synchronous rule is only differ
from the sequential one in thats i 218 is replaced bys i 21, i.e.,
the original state of the (i 21)th site, in the desorption prob
ability wi . The latter model is also called stochastic cellu
automata.

To investigate the time-dependent states, one must spe
the initial state. The initial state with only one vacant site h
been extensively studied. Denote the survival probability
P(t), the vacancy fraction asn(t), and the average squar
distance asR2(t). At the critical point, one expects the powe
laws

P~ t !;t2d, ~1!

n~ t !;th, ~2!

R2~ t !;tz. ~3!

Here z is the critical dynamic exponent. Since the avera
size of occupied domains is finite~not divergent ast grows!,
the domain number follows the same scaling law asn(t).
There is a hyperscaling relation between the three expone
Dz53h14d with D51, the space dimension. Notice th
herez is different from that defined in Ref.@5#. The latter is
©2002 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 057101
z2h in our notation. The original vacant seed will produce
spreading active region in the following time. The acti
region contains vacant domains and occupied domains
do not reach the boundary sites of the lattice. Since the
mains have finite average sizes, the widthG of the active
region is proportional to the domain numberm(t) and fol-
lows the same scaling law asm(t). On the other hand, the
domain number is proportional to the vacancy fraction av
aged only over the active states, hence we have the sc
laws

m~ t !;tcm5th1d, ~4!

G;tcg5th1d. ~5!

In the limit of zero rate, it is known thatcg51/2 in one
dimension@5#. A nontrivial correction at the critical point is
expected.

For initial states of zero correlation length, we assu
that the initial molecule numbern05n(0) is transformed to
f(n0 ,b) in the scale transformation withf a universal func-
tion of n0 and the scale factorb. It has the general properties
f(n0→10,b)5bx0n0 , f(1,b)51, andf(n0 ,1)5n0. The
vacancy fraction, for instance, has the finite-size scaling
lation

n~ t,n0 ,t,L !5b2b/nn„b2zt,f~n0 ,b!,b1/nt,b21L…, ~6!

where t5r 2r c . Let b5(2t)n and choosen051, t→`,
and L→`, one recognizes thatb is the exponent for the
steady order in supercritical phase:n(t);(2t)b. For n(0)
51, Eq. ~6! at the critical point implies a power law

n~ t !;t2b/nz. ~7!

For the Reggeon field theory, Grassberger and De La T
@5# has proved thatb/nz5d. Due to the universality, this
relation should also be valid for the AD process. In the lim
n0→10, assuming that the vacancy fraction is an analy
function of n0, one can recover the power laws for the A
and hasx05zh1b/n. The derivative of lnn(t) with respect
to t in the vicinity of the critical point provides a relation fo
determination of 1/n,

] ln n~ t !

]t U
t50

;t1/n. ~8!

Define a time-dependent cumulant as

U~ t !5
n(2)~ t !

n~ t !2
21 ~9!

with n(2) the second moment of the order~i.e., the vacancy
fraction!. Its scaling relation is

U~ t,n0 ,t,L !5U„b2zt,f~n0 ,b!,b1/nt,b21L…. ~10!

For n(0)51, at the critical point one has a power law in th
infinite L limit

U~ t !;tD/z ~11!
05710
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with D51 the dimension.
Let us takeR2 as the last example. The definition ofR2 in

continuous space is

R2~ t !5E
0

L

dxx2r~x,t !. ~12!

For the depleted states, the molecule densityr(t) does not
depend onx, henceR2(t);L3n(t). The scaling relation is

R2~ t,n0 ,t,L !5b32b/nR2
„b2zt,f~n0 ,b!,b1/nt,b21L….

~13!

This implies that forn051 and a fixedL, a power law

L23R2;t2cr ~14!

with cr5b/nz.
It is remarkable that the same characteristic functionf

enters all the scaling relations. Among all critical expone
introduced in this section, only three are independent.

III. CRITICAL POINT AND EXPONENTS

Initialize the lattice in the AIS then release it to evolv
with the sequential rule, we produce Fig. 1 forn(t) vs time
in a log-log plot forr 50.336 16, 0.336 26, and 0.336 36.
periodic lattice ofL510 000 sites is used. For each lin
0.43106 of samples are generated. In fact, difference
tween such lattice and that of a smaller order is not big
time up to 10 000 sweeps~one sweep is to update the who
lattice one time!. One sees that the middle line is ve
straight from a hundred until 50 000 sweeps. The first 1
sweeps would contain nonuniversal microscopic detail
corrections to the scaling hence should be skipped. In
macroscopic short time,n(t) follows the power law~2!. Us-
ing the three curves of Fig. 1, fromt51000 to 50 000, to
interpolate for a straight line, we attain the critical ra
r cseq50.336 241(10) and exponenth50.3137(28). The er-
rors quoted here and in the following are estimated from

FIG. 1. The log-log plot of the order parametern(t) of the
sequential rule withn051/L, L510 000. Three curves from up to
down are corresponding tor 50.336 16, 0.336 26, and 0.336 36, r
spectively. The dash line is the fitted straight line corresponding
r cseq50.336 241.
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 057101
statistical fluctuations among subgroups of samples. E
subgroup typically contains 20 000 samples. From this se
samples, one can measure other quantities such asP(t),
R2(t), G(t), and the number of domainsm(t). For each
quantity, one can estimate the critical point and attain
corresponding critical exponent. Critical points estima
from various quantities have discrepancy of 2 at the fi
effective digit. With r cseq50.336 241 as input, we attain:d
50.1594(14), z51.578(9), cg50.4728(54), and cm
50.4802(52). One may check that our results fulfill the h
perscaling relationz53h14d within the errors.

The relaxation fromn(0)51 at r cseq with the sequential
rule has the power law of Eq.~7!. The exponentb/nz esti-
mated in a ranget51000;10 000 is 0.1597(5) inL53000
and 0.1597(4) in 2000. One sees that the finite-size ef
has been smaller than the statistical errors. Typica
(80–120)3103 samples are generated for each set of par
eters. The same set of samples givescr50.1603(7) for the
exponent of Eq.~14!. By fitting the power law~11! for U(t),
we attain 1/z50.631(2) in L53000 and 0.634(2) inL
52000. The cumulantU contains the second moment, so t
statistical error is bigger. The dynamic critical exponent a
can be attained from the finite-size scaling~10!. By search-
ing for a time rescale factor (2/3)z for L52000 such that the
cumulant of L52000 has the best match to that ofL
53000, we attainz51.578(3). In order to estimate the ex
ponent 1/n, the left-hand side of Eq.~8! is replaced by a
difference. The difference of rates should not be too sm
otherwise the fluctuation would overwhelm any informatio
With r 50.335 241 and 0.337 241, i.e.,Dt50.002, we attain
1/n50.572(1).

Similar scaling behaviors are observed for the synch
nous rule. The process started fromn(0)51/L with L
510 000 is simulated forr 50.472 244, 0.472 444, an
0.472 644 with 1203103 samples for each. In the time rang
1000–50 000 we attain the critical pointr csyn
50.472 403(39). As expected, the exponents for the s
chronous rule and the sequential rule are the same within
errors since two dynamic rules belong to the same unive
class.

IV. CHARACTERISTIC FUNCTION

The time development ofn(t) at the critical point for
n(0) between 1/L1 and 1 is shown in Fig. 2 withL1
52000. One sees that the adsorption phase and desor
phase are not clearly separated. The dash line is corresp
ing to n051/L1 with the sloph. The vacancy fraction of the
dash line has been amplified by 20 times in order to mak
visible in the figure. Asn(0) increases, the increase ofn(t)
becomes slower and finally crosses over to decrease.
decrease is guided by the power-law relaxation fromn(0)
51.

For n(0) not small nor close to 1, there is no power la
However, the observations are compact to a generalized
ing relation ~6!. Assuming the existence of a characteris
function f(n0 ,b), we try to match the results ofL2
5b21L1 with b52 to those ofL1. The time of the smaller
lattice is rescaled by a factorbz. One also needs to resca
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the amplitudes properly. For instance, forn(t) the rescaled
factor is b2b/n, for R2 it is b32b/n. The amplitude ofU(t)
needs no rescaling. In Fig. 2, the solid curves aren(t) of
L152000 while the crosses are rescaled results ofL2
51000. The functionf for b52 is plotted as an inset. Th
uncertainty off is bigger asn0 is close to 1 since thenn(t)
is not sensitive ton0 and hard to be distinguished from th
relaxation ofn051. However the error is bound sincef
<1.

For a givenn0 of certainL, f as a function ofb can be
determined by searching for an085f(n0 ,b) in the lattice
L85bL such that the rescaledb2b/nn(b2zt,n08 ,b21L) col-
lapses into that of latticeL. An instance ofn050.1 is shown
in Fig. 3 wheren(t) of L52000 is compared with that o
L852250, 1750, 1500, 1250, and 750. The resultedf(n0
50.1,b) is given as an inset.

The characteristic functionf(n0 ,b) is universal in the
sense that it is not only valid for various quantities but a
for different dynamic rules of the same universal class. F
instance, with the same value off5n08 corresponding to
eachn0 that has been found in Fig. 2 for the sequential ru

FIG. 2. The solid lines aren(t) of the sequential rule ofL1

52000 atr cseqwith n050.015, 0.03, 0.05, 0.1, 0.15, 0.2, 0.25, 0.
0.35, 0.4, 0.5, 0.6, and 1, respectively, from the bottom to top. T
crosses are rescaled results ofL251000 with n0850.025, 0.049,
0.082, 0.161, 0.233, 0.304, 0.370, 0.424, 0.500, and 0.552 from
bottom to top. The dash line isn(t,n051/L1), which is enlarged 20
times for comparison. The inset is the characteristic funct
f(n0 ,b) for b52.

FIG. 3. The rescaled vacancy fractio
b2b/nn„b2zt,f(n0 ,b),b21L… with n050.1 andL52000 for vari-
ousb at the critical point. The sequential dynamic rule is adopt
The inset is the characteristic functionf(n0 ,b) with n050.1.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 057101
the rescaledR2(t)/L2
3 of L251000 matches to that ofL1

52000, as shown in Fig. 4 for the synchronous rule.

V. DISCUSSIONS AND CONCLUSIONS

The one-dimensional adsorption-desorption process
simulated with both sequential and synchronous dyna
rules. By fitting the power laws of various observables
either n051/L or 1, we attain the critical points and th
critical exponents. The critical point for the sequential rule
found to ber cseq50.336 24(1), while r csyn50.472 40(4) for
the synchronous one. Our critical points are bigger than
r 50.303 of the previous Monte Carlo simulation and ser

FIG. 4. R2(t)/L3 vs time is plotted. The synchronous dynam
rule is adopted. The solid line hasL152000, while the triangles are
rescaled results ofL251000. The correspondence betweenn0 for
L1 andn08 for L2 is the same as in Fig. 2.n0 from the bottom to top
are 0.015, 0.03, 0.05, 0.1, 0.15, 0.2, and 0.25.
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expansions via time-independent perturbation theory. By
coherent anomaly method theory, Marque@13# attained r
50.337 that is closer to our one for the sequential rule. T
results of critical exponents confirm the universality and
hyperscaling relations. Our best estimations for the ex
nents fromn051/L areh50.3137(28),d50.1594(14), and
z51.578(9). Those fromn051 areb/nz50.1597(5), 1/z
50.631(2), and 1/n50.572(1). They are consistent with the
best analytical results@14# that we have known.

We generalized the dynamic scaling for finiten0 by intro-
ducing a characteristic function ofn0 and the scaling factor
b. This function not only describes the crossover of all o
servables but also should be universal for different dyna
rules. That is confirmed by the sequential and the synch
nous dynamic rules.n0 could be viewed as a relevant param
eter that is running from zero to one according to the ch
acteristic functionf(n0 ,b). The power laws only appear a
vicinity of two fixed points of the function, i.e.,n050 and
n051. All initial states considered here have zero correlat
length. When there is a nonzero initial correlation, the p
ture would change.
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