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Dependence on initial conditions of an adsorption-desorption process
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A one-dimensional irreversible adsorption-desorption process is simulated. The critical parameters as well as
the critical exponents are measured. At the critical point, the crossover between the accumulative state and the
depleted state is described by a universal characteristic function.
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[. INTRODUCTION observed this phenomenon in the Ising model and Potts
model[11]. In Ref.[12], authors attained an analytical ex-
The irreversible adsorption-desorption proce@sDP)  pression of the universal function for the kinetic spherical
equivalent to a contact procefgl is a simple and represen- model. In the present paper, we show that the universal char-
tative model of nonequilibrium. Many important models be- acteristic function also exists in a dynamic process that is
long to the same universal class as the ADP. They are, fdfreversible, nonergodic, and does not fulfil any detailed bal-
instance, the stochastic cellular autorr@h directed perco- ance condition. To confirm the universality of the character-
lation [3], Schial’s first model[4,5], and the Reggeon field istic function, we simulate the model with both sequential
theory[6,7,5. It is known that this class of models under- and synchronous dynamic rules.
goes a dynamic phase transition. The critical parameters as
well as the critical exponents have been calculated by vari- II. THE MODEL AND SCALING LAWS
ous methods, such as the renormalization greegpansion, i _ ) _ ]
the field theory, the series analysis, the high temperature ex- The process is realized on discrete spacetime. Only peri-
pansion, the operator method, and the Monte Carlo simulaRdic bour_1dary condition will be conS|dereq. Each site could
tion, etc. For the adsorption ratdarger than a critical value D€ occupieddenoted byrj=1) or nonoccupieddenoted by
r. (i.e., the subcritical phasethere is only one steady state @i=0). For the sequential rule, the states of sites are updated
in which all sites are occupied; while far<r, (i.e., the ©On€ by one from left to right. A vacant site has a pr_obablhty
supercritical phageactive steady states with finite fraction of I t0 adsorb a molecule. The desorption probability of an
vacancy emerge. Power laws of time evolution have beefccupied site depends on the states of its neighhwisr;
found for two initial states in the extreme conditions, i@), =1—0)=(2—0d/{_;—0i,1)/2 with o{_, the latest updated
the state with only onéor few) vacant sitgto be referred as  state of the {— 1)th site. If both neighbors are occupied, no
accumulative initial state, or AIS in abbreviatjpand(2) the ~ desorption is possible. The synchronous rule is only different
state of no moleculéeferred as depleted initial state, DIS in from the sequential one in that _, is replaced byr;_4, i.e.,
abbreviation. Since the model is nonequilibrium, the initial the original state of thei ¢ 1)th site, in the desorption prob-
conditions could have important effects in all time of the ability w;. The latter model is also called stochastic cellular
evolution. Initial states with molecule number ranged fromautomata.
one to the maximum will be explored in the present paper.  To investigate the time-dependent states, one must specify
In recent years, the dynamic Monte Carlo method basethe initial state. The initial state with only one vacant site has
on the short-time dynamic scaling has been widely used ifbeen extensively studied. Denote the survival probability as
numerical evaluation of the critical parameters and expoP(t), the vacancy fraction as(t), and the average square
nents. The details of the algorithm can be found in Refsdistance aR?(t). At the critical point, one expects the power
[8—10]. The idea can be traced back to Grassberger and de laws
Torre twenty years agfb] in their study on the Schig's

first model that is believed to belong to the same universal P(t)~t"?, (1)
class of the ADP to be studied in the present paper. We first

apply the dynamic Monte Carlo method to the ADP. From n(t)~t7, 2
the short-time evolution of the vacancy fraction with the

AIS, the critical point is estimated. The critical exponents are R?(t)~t2. 3

attained at the critical points with either the AIS or DIS.

Though power laws are lost when molecule number isHere z is the critical dynamic exponent. Since the average
finite, it is found that the critical short-time behavior can besize of occupied domains is finifeot divergent a$ grows,
described by a universal characteristic function. Zheng firsthe domain number follows the same scaling lawnds).

There is a hyperscaling relation between the three exponents,
Dz=3n+44 with D=1, the space dimension. Notice that
*Corresponding author. Email address: stslzb@zsu.edu.cn herez is different from that defined in Ref5]. The latter is
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z— 7 in our notation. The original vacant seed will produce a -
spreading active region in the following time. The active [ — r=0.33616 s
region contains vacant domains and occupied domains that n| —r=0.33626 ”
do not reach the boundary sites of the lattice. Since the do- ~r=0.33636 A
mains have finite average sizes, the widthof the active csen /

region is proportional to the domain numbm(t) and fol-

lows the same scaling law ams(t). On the other hand, the

domain number is proportional to the vacancy fraction aver-

aged only over the active states, hence we have the scaling 10°

laws
m(t) ~tem=1t7%9 (4) AT R
10° 10° 10*
T ~tCa=t73, (5) t (Sweep)
In the limit of zero rate, it is known thaty=1/2 in one FIG. 1. The log-log plot of the order parameteft) of the
dimension[5]. A nontrivial correction at the critical point is  sequential rule witmy=1/L, L=10000. Three curves from up to
expected. down are corresponding to=0.336 16, 0.336 26, and 0.336 36, re-

For initial states of zero correlation length, we assumespectively. The dash line is the fitted straight line corresponding to
that the initial molecule numbety=n(0) is transformed t0  r¢seq~0.336 241.
¢(ng,b) in the scale transformation wit#h a universal func-
tion of ny and the scale factdr. It has the general properties: with D=1 the dimension.

d(ng— +0b)=b*n,, ¢(1b)=1, andp(ny,1)=n,. The Let us takeR? as the last example. The definition®f in
vacancy fraction, for instance, has the finite-size scaling recontinuous space is
lation .
2 —
n(t,nO,T,L)=b_ﬁ/”n(b_zt,¢(no,b),b1/”r,b_1L), (6) Re(t)= fo dXsz(X,t). (12)

where 7=r—r.. Let b=(—7)" and chooseo=1, t—=,  For the depleted states, the molecule densit) does not
and L—e, one recognizes thg is the exponent for the gepend onx, henceR?(t)~L3n(t). The scaling relation is
steady order in supercritical phase(r)~ (— 7)#. Forn(0)
=1, Eq.(6) at the critical point implies a power law R(t,ng,7,L)=b3"#"R%(b~%, ¢(ngy,b), b 7,b71L).
13
n(t)~t Az, 7) a3
This implies that fomg=1 and a fixed., a power law
For the Reggeon field theory, Grassberger and De La Torre
[5] has proved thap/vz= 5. Due to the universality, this L3R ~t ™ (14
relation should also be valid for the AD process. In the limit
no— +0, assuming that the vacancy fraction is an analyticVith ¢;=B/vz. o _
function of ny, one can recover the power laws for the AIS It is remarkable that the same characteristic funcien
and has<,=z7+ B/v. The derivative of Im(t) with respect enters all the sqallng r_elatlons. Among aII_ critical exponents
to = in the vicinity of the critical point provides a relation for Introduced in this section, only three are independent.
determination of 1,
Ill. CRITICAL POINT AND EXPONENTS
alnn(t)

aT

~t, (8) Initialize the lattice in the AIS then release it to evolve
=0 with the sequential rule, we produce Fig. 1 fa(t) vs time
in a log-log plot forr=0.336 16, 0.336 26, and 0.336 36. A

Define a time-dependent cumulant as periodic lattice ofL=10000 sites is used. For each line,

n@)(t) 0.4x 10° of samples are generated. In fact, difference be-
U(t)= -1 (9)  tween such lattice and that of a smaller order is not big for
n(t)? time up to 10 000 sweep®ne sweep is to update the whole

lattice one timg¢ One sees that the middle line is very
straight from a hundred until 50 000 sweeps. The first 100
sweeps would contain nonuniversal microscopic detail or
t Ly= -~z W p=11). (1 correctlons_ to the s_callng hence should be skipped. In the
U(tino, L) =U (0™, $(ng,b),b™ 7,07 L). (10 macroscopic short timey(t) follows the power law(2). Us-
Forn(0)=1, at the critical point one has a power law in the ing the three curves of Fig. 1, from=1000 to 50000, to
infinite L limit interpolate for a straight line, we attain the critical rate
leseq= 0.336 241(10) and exponent=0.3137(28). The er-
U(t)~tP’? (11 rors quoted here and in the following are estimated from the

with n(® the second moment of the ordére., the vacancy
fraction). Its scaling relation is

057101-2



BRIEF REPORTS PHYSICAL REVIEW E 65 057101

statistical fluctuations among subgroups of samples. Each
subgroup typically contains 20 000 samples. From this set of

samples, one can measure other quantities sucR(8s o — g
R2(t), T'(t), and the number of domains(t). For each n S,
guantity, one can estimate the critical point and attain the
corresponding critical exponent. Critical points estimated

from various quantities have discrepancy of 2 at the fifth

effective digit. Withr .s.=0.336 241 as input, we attai: -
=0.1594(14), z=1.5789), c4=0.4728(54), and cy . . * L

L=2000 - 20*(n,=11L,)

=0.4802(52). One may check that our results fulfill the hy- 10" 102 10° 10*
perscaling relatiorz= 37+ 4§ within the errors. t (Sweep)
The relaxation froom(0)=1 atr ¢, With the sequential o .
rule has the power law of Eq7). The exponenf/ vz esti- FIG. 2. The solid lines ara(t) of the sequential rule ok,

and 0.1597(4) in 2000. One sees that the finite-size eﬁeCg;gg'sgfg?és}e%fg@'&dré;ﬂﬁzri;c—t'\iggbf@ﬁnht:?—bgtg;? tg 504% The

has been smaller than the statistical errors. Typicall N 0 e T

(80120 10° samples are generated for each set O?garan{qosz, 0.161, 0.233, 0.304, 0.370, 0.424, 0.500, and 0.552 from the
. bottom to top. The dash line ig(t,ny=1/L,), which is enlarged 20

eters. The same set of _sa_lmples giees 0.1603(7) for the times for comparison. The inset is the characteristic function

exponent of Eq(14). By fitting the power law(11) for U(t), $(no,b) for b=2.

we attain 12=0.631(2) in L=3000 and 0.634(2) irL

=2000. The cumulant contains the second moment, so theth litud V. For inst i) th led

statistical error is bigger. The dynamic critical exponent also € ampl yﬁ/evs propze ry- °§JQ,SV ance, fof ). € rescaie

can be attained from the finite-size scalifi). By search- factor isb for R itis b - The amplitude olJ(t)

ing for a time rescale factor (2/3jor L =2000 such that the needs no resgallng. In Fig. 2, the solid curves afg of
cumulant of L=2000 has the best match to that bf L,=2000 while the crosses are rescaled resultsLgf

=3000, we attairz=1.57§3). In order to estimate the ex- 1000'. The fun_ctiqms for b=_2 is plotted as an inset. The
ponent 14, the left-hand side of Eq(®) is replaced by a uncertainty of¢ is bigger asg is close to 1 since then(t)

difference. The difference of rates should not be too smaliS not s_ensitive ta, and hard to be distinguished fr_om the
otherwise the fluctuation would overwhelm any information.Lelax"Jltlon ofny=1. However the error is bound sina#
With r=0.335241 and 0.337 241, i.,7=0.002, we attain . . .
1/v=05771). For a givenng of certamL, ¢ as a functhn ob can_be
Similar scaling behaviors are observed for the synchro—d?term'neOI by searching for %;V(ﬁ(”g’zb) n t_hle lattice
nous rule. The process started fronf0)=1/L with L L' =bL such that the rescaled”"n(b"*t,ns,b""L) col-
=10000 is simulated forr=0.472244, 0.472444, and lapses into that of lattice. An instance ohy=0.1 is shown
0.472 644 with 126:10° samples for each. In the time range I Fig. 3 wheren(t) of L=2000 is compared with that of
1000-50000 we attain the critical pointres,, L =2250, 1750, 1500, 1250, and 750. The resulde,
=0.472403(39). As expected, the exponents for the syn="0.1p) is given as an inset. o _
chronous rule and the sequential rule are the same within the The characteristic functiomb(ng,b) is universal in the
errors since two dynamic rules belong to the same univers&€nse that it is not only valid for various quantities but also

class. for different dynamic rules of the same universal class. For
instance, with the same value @f=n; corresponding to
IV. CHARACTERISTIC FUNCTION eachng that has been found in Fig. 2 for the sequential rule,

The time development ofi(t) at the critical point for 0.30

n(0) between 1/; and 1 is shown in Fig. 2 with_, ¢w

=2000. One sees that the adsorption phase and desorption CRN \

phase are not clearly separated. The dash line is correspond- ozl ;

ing to ng=1/L 4 with the slop». The vacancy fraction of the n R

dash line has been amplified by 20 times in order to make it . Lormso 100011

visible in the figure. A:1(0) increases, the increase rofft) 020 . t::;:g::g:;gz

becomes slower and finally crosses over to decrease. The o L=1250 $=0.14

decrease is guided by the power-law relaxation fro(0) v LT780 em01847

=1. 0.15 L
Forn(0) not small nor close to 1, there is no power law. 10’ tYSwee ) 10 1o

However, the observations are compact to a generalized scal- P

ing relation (6). Assuming the existence of a characteristic F|G. 3. The rescaled vacancy fraction

function ¢(ng,b), we try to match the results of, b= A"n(b~%, ¢(ngy.b),b~L) with ng=0.1 andL = 2000 for vari-
=b~!L, with b=2 to those ofL,. The time of the smaller ousb at the critical point. The sequential dynamic rule is adopted.
lattice is rescaled by a factdr®. One also needs to rescale The inset is the characteristic functigf(ng,b) with ny=0.1.
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expansions via time-independent perturbation theory. By the
coherent anomaly method theory, MarqUeg] attainedr
=0.337 that is closer to our one for the sequential rule. The
results of critical exponents confirm the universality and the
hyperscaling relations. Our best estimations for the expo-
nents fromny=1/L are »=0.3137(28),6=0.1594(14), and

RYL®

L,=2000 z=1.57§9). Those fromny=1 are B/vz=0.15915), 1
* L1000 rescaled =0.6312), and 14=0.5741). They are consistent with the
= .2 = - best analytical resultsl4] that we have known.
10 10 t(Swee1p0) 10 We generalized the dynamic scaling for finitg by intro-

ducing a characteristic function of, and the scaling factor

FIG. 4. R2(t)/L3 vs time is plotted. The synchronous dynamic b This function not only describes the crossover of all ob-
rule is adopted. The solid line has= 2000, while the triangles are servables but also should be universal for different dynamic
rescaled results df ,=1000. The correspondence betweepfor ~ rules. That is confirmed by the sequential and the synchro-
L, andng for L, is the same as in Fig. B, from the bottom to top  nous dynamic rulesy could be viewed as a relevant param-
are 0.015, 0.03,0.05, 0.1, 0.15, 0.2, and 0.25. eter that is running from zero to one according to the char-

acteristic functiong(ng,b). The power laws only appear at

the rescaledR?(t)/L3 of L,=1000 matches to that df;  vicinity of two fixed points of the function, i.en,=0 and

=2000, as shown in Fig. 4 for the synchronous rule. no=1. All initial states considered here have zero correlation
length. When there is a nonzero initial correlation, the pic-
V. DISCUSSIONS AND CONCLUSIONS ture would change.

The one-dimensional adsorption-desorption process is
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